On a class of Ikeda-Nakayama rings
نویسندگان
چکیده
In this work we introduce the notion of P-Ikeda-Nakayama rings (\P-IN-rings") which is in some way a generalization IkedaNakayama (\IN-rings"). Then, study transfer property to trivial ring extension, localization, homomorphic image and direct product.
منابع مشابه
A class of J-quasipolar rings
In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...
متن کاملA class of Artinian local rings of homogeneous type
Let $I$ be an ideal in a regular local ring $(R,n)$, we will find bounds on the first and the last Betti numbers of $(A,m)=(R/I,n/I)$. if $A$ is an Artinian ring of the embedding codimension $h$, $I$ has the initial degree $t$ and $mu(m^t)=1$, we call $A$ a {it $t-$extended stretched local ring}. This class of local rings is a natural generalization of the class of stretched ...
متن کاملThe Armendariz module and its application to the Ikeda-Nakayama module
A ring R is called a right Ikeda-Nakayama (for short IN-ring) if the left annihilator of the intersection of any two right ideals is the sum of the left annihilators, that is, if (I ∩ J) = (I) + (J) for all right ideals I and J of R. R is called Armendariz ring if whenever polynomials f (x) = a0 + a1x + ··· + amx, g(x) = b0 + b1x + ··· + bnx ∈ R[x] satisfy f (x)g(x) = 0, then aibj = 0 for each ...
متن کاملOn a Class of Lattice-ordered Rings
for some real number X, the symbol V denoting the lattice least upper bound. Any ring R is regular [10] if for each xER there is an xaER such that xx°x = x. It is evident that every regular F-ring R contains a maximal bounded sub-F-ring R, the F-ring of all xER satisfying equation (1.1). The relationship between a regular F-ring and its maximal bounded sub-F-ring is analogous to that between th...
متن کاملa class of j-quasipolar rings
in this paper, we introduce a class of $j$-quasipolar rings. let $r$ be a ring with identity. an element $a$ of a ring $r$ is called {it weakly $j$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $j(r)$ and the ring $r$ is called {it weakly $j$-quasipolar} if every element of $r$ is weakly $j$-quasipolar. we give many characterizations and investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2022
ISSN: ['0037-8712', '2175-1188']
DOI: https://doi.org/10.5269/bspm.46098